Der Urknall im Labor -

Experimente mit schweren Atomkernen bei hohen Energien

> Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Aufbau der Materie

- Die Masse der Materie steckt überwiegend in den Atomkernen
 Die Kleinsten bekennten Beuteile der Meterie sind Ouerke
- Die kleinsten bekannten Bauteile der Materie sind Quarks

Standardmodell der Teilchenphysik

Es gibt 12 elementare Bausteine der Materie (und ihre Anti-Teilchen)

Die Bausteine lassen sich nach drei Generationen sortieren (Massenunterschied jeweils etwa Faktor 10-100)

Zum Aufbau der uns bekannten Materie werden nur drei benötigt (u, d, e).

Standardmodell der Teilchenphysik

	No.	•		9
	Gravitation	Schwach (Elektro	Elektromagnetisch schwach)	Stark
Träger- teilchen	Gravitation (nicht beobachtet)	w* w - zº	Photon	Gluon
wirkt auf	Alle	Quarks und Leptonen	Quarks und geladene Leptonen und W ⁺ W ⁻	Quarks und Gluonen

- Es gibt vier fundamentale Kräfte in der Natur
- Die starke Kraft wirkt zwischen Quarks und wird durch Gluonen vermittelt

Quarks und Hadronen

→ Hadronen

Baryonen (qqq) z.B. Proton (uud) Neutron (udd)

. . .

Mesonen (qq) z.B. Pion (uu,dd,du,ud)

• Quarks tragen Farbe

- Gluonen sind die Austauschteilchen der starken WW (Quantenchromodynamik, QCD)
- In der Natur sind nur farbneutrale Hadronen erlaubt (confinement)

. . .

Elektromagnetische und starke Kraft

a: elektromagnetische Kopplungs-"konstante"

 α_s : starke Kopplungs-"konstante"

Farbeinschluss

→ Freie Quarks sind nicht beobachtbar!

Laufende Kopplung und asymptotische Freiheit

Die starke Kopplungskonstante ist *nicht* konstant, sondern hängt vom Abstand ab (*running coupling constant*).

Bei sehr kleinen Abständen bzw. hohen Energien wird die Kopplung schwach (*asymptotische Freiheit*).

Gross, Politzer, Wilczek (1974) Nobelpreis 2004

Confinement

ABER: Bei kleinen Abständen (\rightarrow hohen Dichten) oder hohen Energien (\rightarrow hohen Temperaturen) verschwindet die starke Kraft zwischen den Quarks und Gluonen....

Deconfinement

Neuer Zustand von Materie!

(Quasi-)freie Quarks und Gluonen → deconfinement

Quark-Gluon-Plasma (QGP)

Frühes Universum

Kern-Kern Kollisionen bei hohen Energien

Zeit

Expansion und Entkopplung

Feuerball

Kompression und Heizen

vor dem Stoß

farbneutrale Hadronen Little Bang

Quark-Gluon Plasma Erzeugung erwartet bei ε= 3 GeV/fm³ Lebensdauer ca 10⁻²²s

normale Kernmaterie

 $\begin{array}{ll} \rho_0 = & 0.17 \ \text{/fm}^3 \\ \epsilon_0 = & 0.16 \ \text{GeV/fm}^3 \end{array}$

Mirkoskope der Teilchenphysiker

Synchrotron

LHC: *Collider,* d.h. zwei gegenläufige Strahlen in pp: 7 TeV + 7 TeV = 14 TeV 1 TeV = 10^{12} eV

 $\Delta W = q \Delta U$ Für q = e und $\Delta U = 1 V$:

 $\Delta W = 1 eV$

Technische Limitierung für Protonen- und Ionen-Synchrotrons:

Ablenkstärke der Magnete

→ sehr starke Magnete
→ großer Radius

1232 Dipolmagnete
je 15 m lang
Magnetfeld 9 T
je ca 1MCHF
werden derzeit aufgebaut

ab 2007 ATLAS, CMS: p-p Kollisionen bei 14 TeV

ab 2008 ALICE: Pb-Pb Kollisionen bei 5.5 TeV (x 208 = 0.18 mJ)

ALICE Experiment

1000 Physiker aus 94 Instituten in 29 Ländern

im Aufbau

Pb-Pb Kollision im LHC

Bis zu 50000 geladene Teilchen pro Ereignis!

ALICE Magnet

Gewicht: 7800 t Magnetfeld: 0.5 T

Ablenkung geladener Teilchen im Magnetfeld aufgrund der Lorentzkraft

$$F = qvB = m\frac{v^2}{r} \Rightarrow mv = qBr$$

 \rightarrow Impulsbestimmung

- HV electrode (100 kV readout chamber
- Spurvermessung, Impulsbestimmung

- Detektorvolumen: 88 m³
- Datenvolumen: 570.000 pads x 500 Zeit samples x 10 Bit ADC
 → ~1 GB / s

Quarkonia

Quarkonia: Mesonen aus einem schweren Quark-Antiquark-Paar

z.B.

 $J/\Psi, \Psi', \dots$ (charm-anticharm) $m_{J/\Psi} \approx 3 m_{proton}$

Y, *Y*^{\cdot},... (beauty-antibeauty) $m_{Y} \approx 10 m_{proton}$

ca. 1 J/Ψ pro Pb-Pb Kollision

ca. 1 Y pro 100 Pb-Pb Kollisionen

→ unterdrückte Quarkonia Produktion im QGP

Quarkonium-Unterdrückung

$$T = 0: \quad V_{stark}(r) = -\frac{4}{3} \frac{\alpha_s \hbar c}{r} + kr$$

Quarkonia-Unterdrückung -> QGP-Thermometer

Quarkonia-Nachweis

Zerfallskanäle des J/Ψ :

hauptsächlich: $J/\Psi \rightarrow$ viele Hadronen

etwa 6%: $J/\Psi \rightarrow e^+e^-$

Identifikation von Elektronen und Positronen

Wie können Elektronen und Positronen identifiziert werden?

- Impulsmessung im Magnetfeld
- Elektronen sind bei gleichem Impuls viel schneller als andere Teilchen, weil sie viel leichter sind → suche geschwindigkeitsabhängigen Effekt:

Übergangsstrahlung an Grenzflächen

ALICE Transition Radiation Detector

ALICE Transition Radiation Detector

Elektronen- und Positronen-Identifikation \rightarrow J/ Ψ , Y, semi-leptonischer Zerfall von D, B

Parameter:

540 Module -> ~760m² 28 m³ Xe/CO₂ (85:15) 1.2 Million Auslesekanäle Institute:

Athen, Bukarest, Darmstadt, JINR, Frankfurt, GSI, PI Heidelberg, KIP Heidelberg, Köln, Karlsruhe, Kaiserslautern, Münster, Worms

Physik in Frankfurt

2005: Bezug des Neubaus Physik am naturwissenschaftlichen Campus Riedberg

> Baukosten 60 M€ + Geräte 10 M€ → großzügige Labor-, Computer- und Werkstattausstattung

TRD – Labor in Frankfurt

Quarkonia

"1 Jahr" ALICE Pb-Pb

Little Bang in ALICE

