

Der Antimaterie auf der Spur

Michael Schmelling - MPI für Kernphysik e-Mail: Michael. Schmelling@mpi-hd.mpg.de

Übersicht

- Einführung
- Teilchen, Felder und Beschleuniger
- Antimaterie
- Gibt es Antimaterie im Universum?
- Zusammenfassung und Ausblick

1. EINFÜHRUNG

- Was sind die die fundamentalen Bausteine der Welt?
- Welche Kräfte wirken zwischen Ihnen?

"Erforschen was die Welt im Innersten zusammen hält"

"Scheinbar ist Farbe, scheinbar Süßigkeit, scheinbar Bitterkeit, wirklich sind nur Atome und Leeres"

Demokrit, ca. 400 v.Chr.

heutiger Kenntnisstand – das Standardmodell der Teilchenphysik ->

2. Teilchen, Felder und Beschleuniger

Zusammengesetzte Elementarteilchen

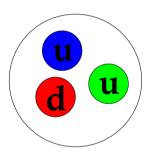
→ Baryonen

- Systeme aus 3 Quarks
- alle Kombinationen erlaubt
- viele nachgewiesen
- die meisten sind instabil

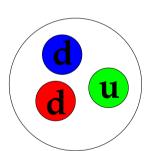
Beispiele

- → Proton
- → Neutron
- → Lambda
- → Omega-Minus
- → Lambda-c, Lambda-b
- → und viele mehr. . .

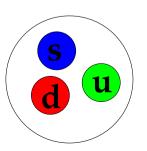
 (\mathbf{c})


Ladung +2/3

 \mathbf{d}


 (\mathbf{S})

b)


Ladung -1/3

Proton – Ladung +1

Neutron – Ladung 0

Lambda – Ladung 0

Dimensionen

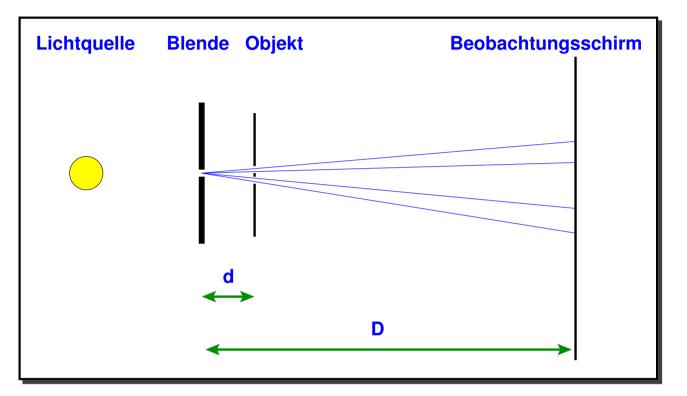
typische Ausdehnung eines Atoms

$$10^{-10} \text{m}$$

- → Nehme eine Stecknadel und steche ein Loch in ein Blatt Papier (D = 1mm). Dann bilde eine Menschenkette mit allen Einwohnern Baden Württembergs (ca. 10 Millionen) und verkleinere jeden Menschen auf die Größe eines Atoms. Die gesamte Kette würde durch das Loch passen.
- typische Größe des Atomkerns im Vergleich zum Atom

$$10^{-15}$$
m

→ Nehme einen Ballon und blase ihn auf bis der Durchmesser so groß ist wie ein Fussballstadion. Der Atomkern wäre dann ein Stecknadelkopf in der Mitte.

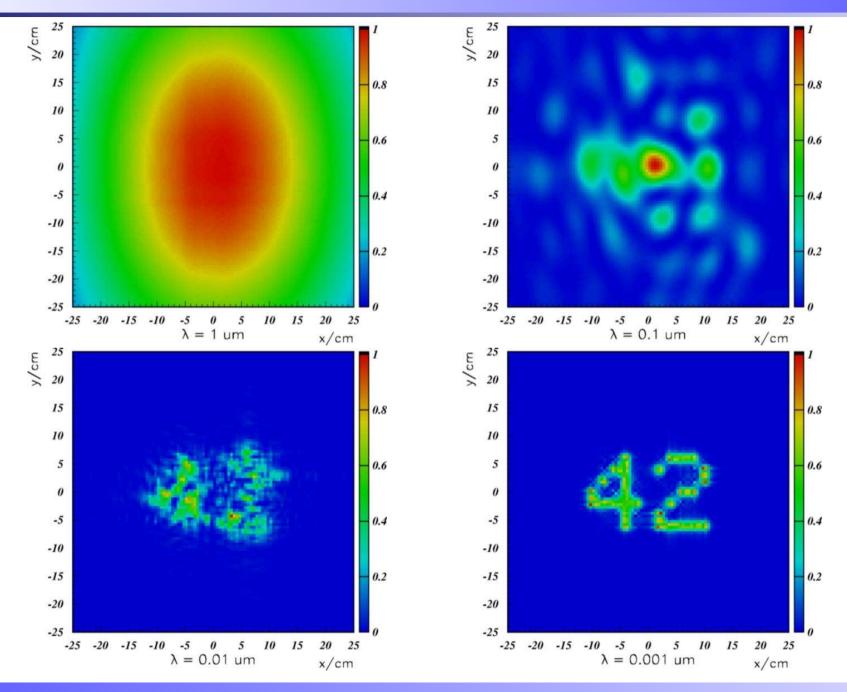

woher weiss man das – bzw., wie kann man ins Innere der Materie schauen?

Wellenlänge und Auflösung

→ Ein Gedankenexperiment:

Dimensionen:

$$d = 1$$
mm


$$D = 10 \text{m}$$

- beobachte ein Objekt (Blende) mit Ausdehnung von einigen μ m
- Vergrösserung nach Strahlensatz: V = D/d = 10000
- was sieht man wirklich?
 - → berechne mittels Huygens Prinzip in Fresnel'scher Näherung das Schirmbild für verschiedene Wellenlängen λ

Berechnete Intensitätsverteilungen

Resultat

- große Wellenlängen für grobe Strukturen
- kleine Wellenlängen für feine Strukturen

Problem: Wie erzeugt man möglichst kleine Wellenlängen?

Für Licht (Photonen) gilt:

$$E = h \cdot \nu = p \cdot c$$
 sowie $c = \lambda \cdot \nu$ und damit $\lambda = \frac{h}{p}$

de Broglie:

- $\lambda = h/p$ gilt allgemein, d.h. auch für Elektronen, Protonen, ...
 - → hochenergetische Teilchen liefern kurze Wellenlängen
 - → große Beschleuniger zur Untersuchung kleinster Abstände

... was heisst das konkret?

Wellenlängen und Energien

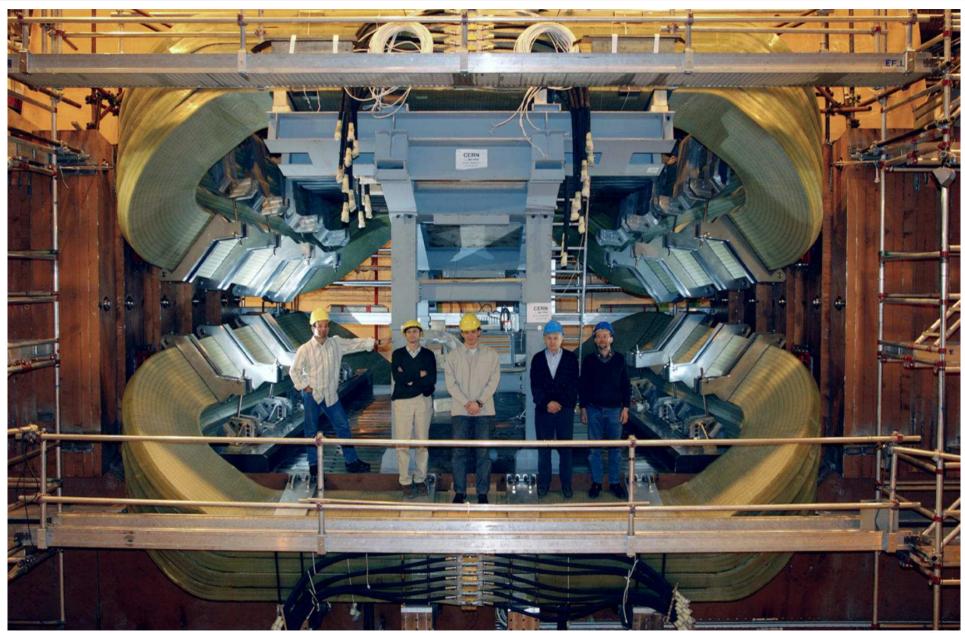
Energie-Einheit in der Teilchenphysik: eV

1 eV ist die kinetische Energie welche ein Elektron beim Durchlaufen einer Beschleunigungsspannung von 1 V gewinnt

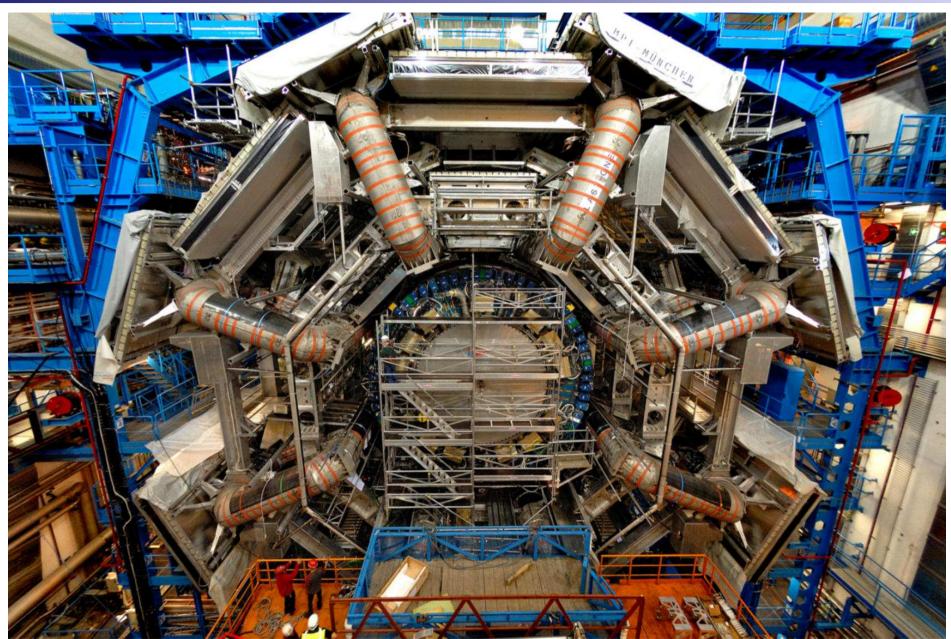
Strahlung	Wellenlänge	Energie
MW	300 m	$4.1 \cdot 10^{-9} \text{ eV}$
UKW	3 m	$4.1\cdot 10^{-7}~\mathrm{eV}$
Handy/GPS	$0.3~\mathrm{m}$	$4.1\cdot 10^{-6}~\mathrm{eV}$
Infrarot	$10^{-5} \; {\rm m}$	$0.12~\mathrm{eV}$
sichtbares Licht	$6\cdot 10^{-7}~\mathrm{m}$	2 eV
UV	$1.2\cdot 10^{-7}~\mathrm{m}$	$10~\mathrm{eV}$
Röntgen-Strahlung	$1.2 \cdot 10^{-10} \; \mathrm{m}$	$10^4~{ m eV}$
γ -Strahlung	$1.2 \cdot 10^{-12} \; \mathrm{m}$	$10^6~{ m eV}$
Elektronen in LEP ($c - v = 1$ mm/s)	$1.2 \cdot 10^{-17} \; \mathrm{m}$	$10^{11}~{ m eV}$
Protonen in LHC ($c - v = 3$ m/s)	$1.8 \cdot 10^{-19} \text{ m}$	$7\cdot 10^{12}~{ m eV}$

Der Beschleunigerkomplex des CERN

Ein Blick in den LHC-Tunnel



Magnet des LHCb Experiments



(c) CERN

Der ATLAS Detektor

(c) CERN

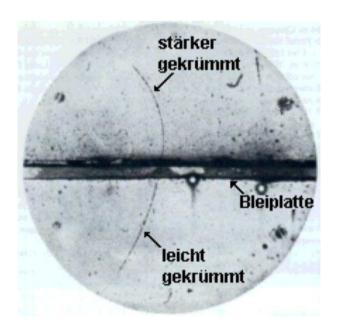
Dimensionen

- Protonen in LHC: ca. $6 \cdot 10^{14}$
 - → Wasserstoff gefüllter Ballon mit einem Durchmesser von 1/3 mm.
- Gesamtmasse dieser Protonen: 1 nanogramm
 - \rightarrow Masse eines Eiswürfels mit einer Kantenlänge von 1μ m.
- Beschleunigung mittles elektromagnetischer Felder
 - → ähnlich wie in einem nicht-LCD Fernseher
- Startgewicht einer chemischen Rakete zur Beschleunigung eines Mikro-Eiswürfels auf LHC Endgeschwindigkeit

$$10^{267394} \text{ kg}$$

- \rightarrow Im gesamten Weltall gibt es "nur" ca. 10^{50} kg . . .
- im LHC-Strahl gespeicherte Energie: 6.72 · 10⁸ J
 - ightharpoonup kin. Energie der USS-Enterprise bei $v=7.7~{\rm Kn}$

3. ANTIMATERIE



Zu jedem Teilchen gibt es ein Antiteilchen mit

- gleicher Masse
- gleichem Eigendrehimpuls
- aber entgegengesetzter Ladung

1931: Dirac – Vorhersage aus relativistischer Quantenmechanik

1932: Anderson – erster Nachweis des Positrons, e^+

Wieso gibt es Antimaterie?

→ Die Äquivalenz von Masse und Energie

- Lichtgeschwindigkeit ist Grenzgeschwindigkeit
- lacktriangle bei v
 ightharpoonup c bedeutet mehr kinetische Energie ightharpoonup Massenzunahme
- höhere Energie bedeutet größere Masse
- Einstein's exaktes und allgemeines Resultat:

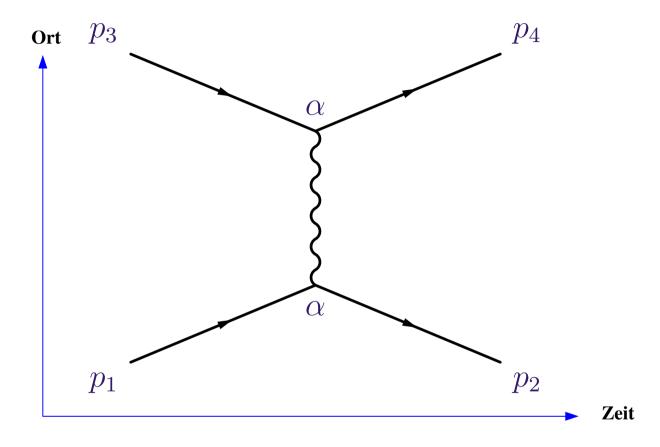
$$E = m c^2$$

Umwandlungsmöglichkeiten

- \blacksquare "Energiewirtschaft": 1 g Materie = 9×10^{13} J = 25 Milliarden kWh
- Elementarteilchenphysik: 25 Milliarden kWh = 1 g Materie

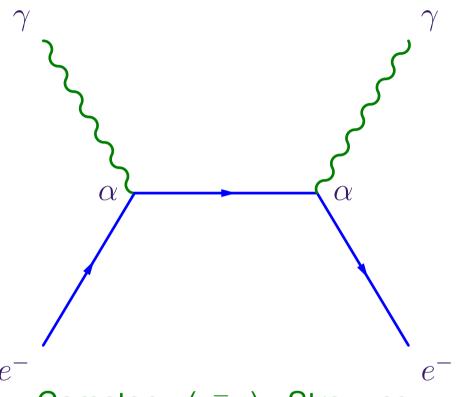
Die fundamentalen Wechselwirkungen

TYPE INTENSITY OF FORCES (DECREASING ORDER) STRONG NUCLEAR FORCE - 1 GLUONS (NO MASS) ATOMIC NUCLEUS ELECTRO -MAGNETIC FORCE - 10 -3 PHOTONS (NO MASS) WEAK NUCLEAR FORCE - 10 -5 BOSONS Zº, W+, W- (HEAVY) GRAVITATION - 10 -38 GRAVITONS (?) THE EXCHANGE OF PARTICLES IS RESPONSIBLE FOR THE FORCE	es in Nature			
ELECTRO -MAGNETIC FORCE ~ 10 -3 PHOTONS (NO MASS) ATOMIC SHELL ELECTROTECHNIQUE WEAK NUCLEAR FORCE ~ 10 -5 BOSONS Z°, W+, W- (HEAVY) GRAVITATION RADIOACTIVE BETA DESINTEGRATION HEAVENLY BODIES	TYPE			OCCURS IN:
WEAK NUCLEAR FORCE ~ 10 -5 BOSONS Z°, W+, W- (HEAVY) RADIOACTIVE BETA DESINTEGRATION RAVITATION — 10 -38 GRAVITONS (?) HEAVENLY BODIES	STRONG NUCLEAR FORCE	~ 1	GLUONS (NO MASS)	ATOMIC NUCLEUS
GRAVITATION ~ 10 ⁻³⁸ GRAVITONS (?) HEAVENLY BODIES	ELECTRO -MAGNETIC FORCE	~ 10 ⁻³	PHOTONS (NO MASS)	
	WEAK NUCLEAR FORCE	~ 10 ⁻⁵		
THE EXCHANGE OF PARTICLES IS RESPONSIBLE FOR THE FORCE	GRAVITATION	~ 10 ⁻³⁸	GRAVITONS (?)	HEAVENLY BODIES
THE EXCHANGE OF PARTICLES IS RESPONSIBLE FOR THE FORCE			Y A	
	THE EXCHANGE	OF PARTICLES IS RE	SPONSIBLE FOR THE	FORCE

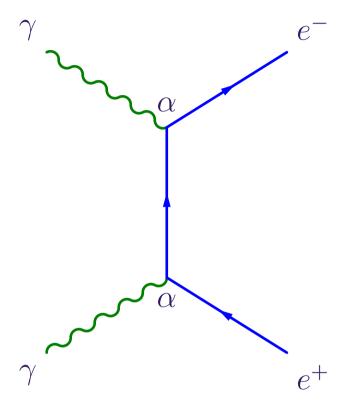

Wechselwirkungen sind durch die Art des Austauschteilchens characterisiert

Physikalische Beschreibung

→ "Feynman Diagramme"


- Linien beschreiben die Teilchen, Knotenpunkte die Wechselwirkungen
- Energie und Impuls sind an jedem Vertex erhalten

Materie und Antimaterie



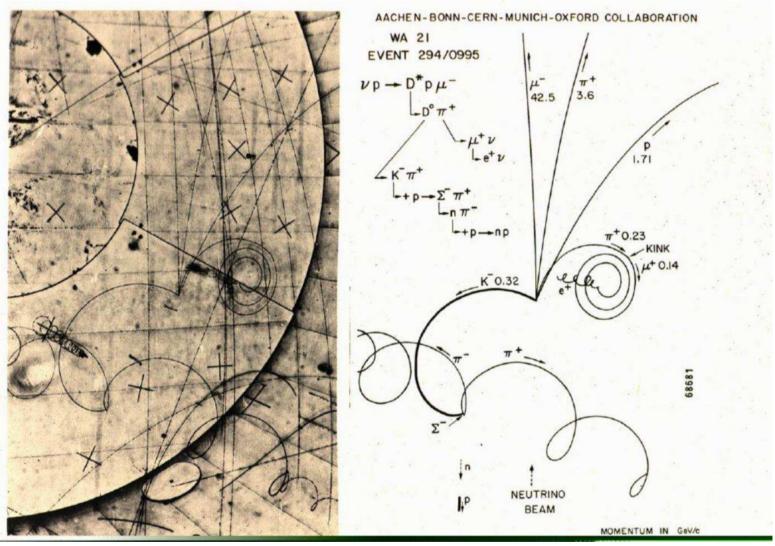
→ Wechselwirkungen von Licht und Elektronen

Compton - $(e^-\gamma)$ - Streuung

Symmetrie zwischen Raum und Zeit impliziert, dass auch das gedrehte Feynman-Diagramm einen physikalischen Prozess beschreibt . . .

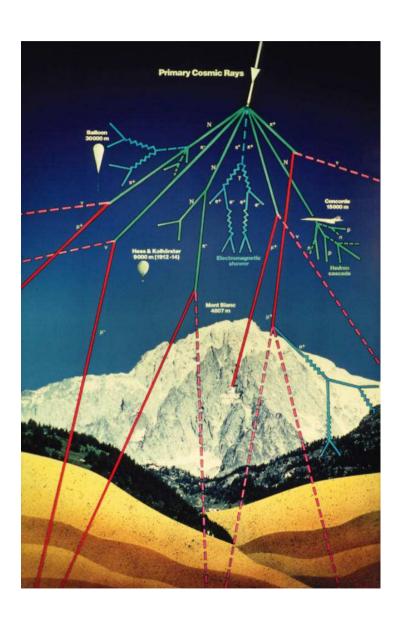
- Masse aus Energie!
- gleiche Mengen von
 - → Materie und
 - → Antimaterie

Energie-Materie Umwandlungen


→ Randbedingungen für mögliche Reaktionen

- Energieerhaltung
- Impulserhaltung
- Drehimpulserhaltung
- Ladungserhaltung
- Beispiele:
 - $\rightarrow \gamma \leftrightarrow$ m verboten wegen Impulserhaltung
 - brauche mindestens 2 Energiequanten
 - $\rightarrow \gamma \gamma \leftrightarrow e^-$ verboten wegen Ladungserhaltung
 - $\rightarrow \gamma \gamma \leftrightarrow e^-$ p glücklicherweise nicht beobachtet
 - $\rightarrow \gamma \gamma \leftrightarrow e^- e^+$ geht
- Umwandlung nur in Materie-Antimaterie Paare
- entgegengesetzte Ladungen, sonst gleiche Eigenschaften
 - → dramatische Auswirkungen für die Teilchenphysik...

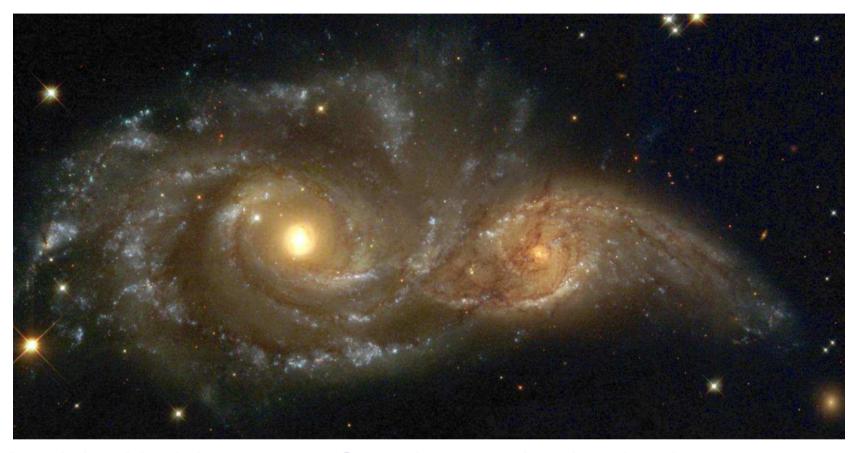
Reaktionen mit Elementarteilchen



- → Kaskaden von Produktion und Zerfällen
- → Untersuchung z.B. mit Hilfe von Blasenkammeraufnahmen
- → heute: elektronische Detektoren

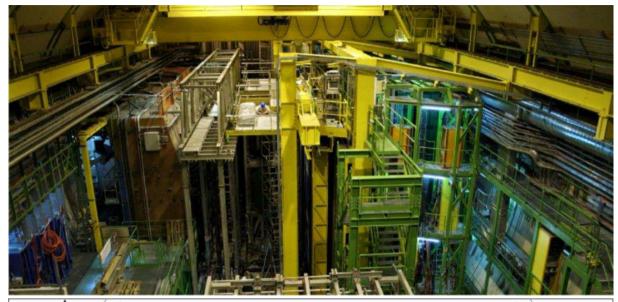
4. GIBT ES ANTIMATERIE IM UNIVERSUM?

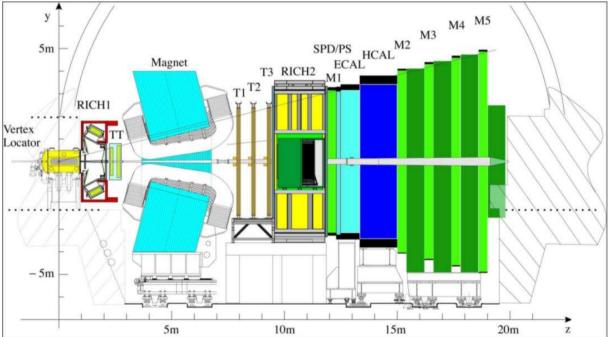
- Im Labor kennt man Antimaterie aus Sekundärreaktionen
- Suche nach primordialer Antimaterie,
 Anti-Helium, aus dem Weltall
 - → Überreste vom Urknall
 - → zu komplex für spätere Erzeugung
 - → AMS-Detektor für ISS



→ keine Evidenz für Anti-Helium in der kosmischen Strahlung

Vernichtungsstrahlung aus dem Weltall?


- zahlreiche Kollisionen von Galaxien werden beobachtet
- keine Evidenz für Strahlung aus Materie-Antimaterie Vernichtung
- $lue{}$ naive Erwartung: Vernichtungsstrahlung in 50% der Fälle


Fazit: vom Urknall ist offenbar nur Materie übrig geblieben!

Das LHCb Experiment

→ Ziel:

Verständnis der Materie-Antimaterie Asymmetrie des Universums und der Grenzen der Standard-Modells der Teilchenphysik

- am CERN-LHC
- pp-Kollisionen
- 14 TeV Energie
- ca. 1 Million Kanäle
- 40 MHz Rate

Experimenteller Ansatz

→ Beispiel: Vergleiche folgende Zerfälle

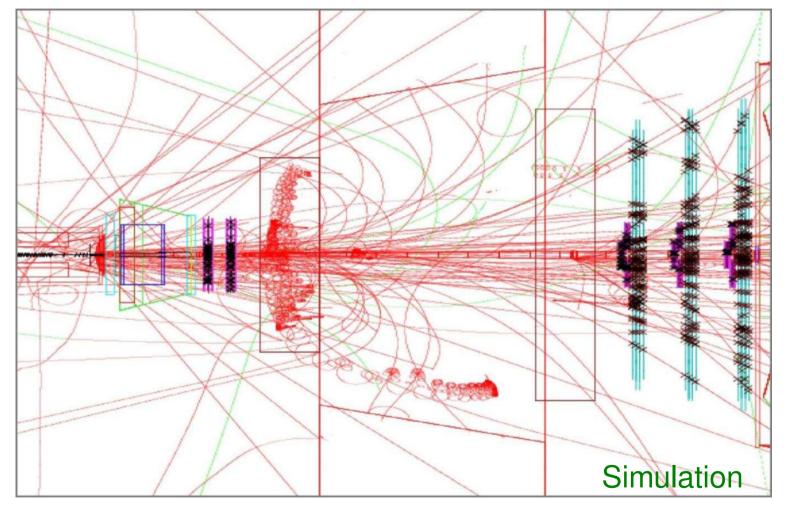
$$\bar{B}^0 \to J/\psi \ K_s^0 \to \mu^+ \mu^- \pi^+ \pi^-$$

 $B^0 \to J/\psi \ K_s^0 \to \mu^+ \mu^- \pi^+ \pi^-$

Zusammensetzung der Anfangs-Teilchen im Quark-Modell:

$$B^0=ar{b}d$$
 Masse $pprox$ Antimaterie $ar{B}^0=bar{d}$ Masse $pprox$ Materie

Fazit:


- Zerfall in 4 Teilchen, gleiche Mengen Materie und Antimaterie
- wenn das B^0 (Antimaterie) eine kürzere Lebensdauer hat als das \bar{B}^0 (Materie), dann hat das etwas damit zu tun warum im Universum Antimaterie verschwunden ist und Materie übrig geblieben ist.

Die experimentelle Herausforderung

→ Visualisierung einer einzelnen pp-Kollision

- nur 4 Spuren stammen von dem gesuchten Zerfall
- \blacksquare nur eine von 10 Millionen Kollisionen enthält einen solchen Prozess

5. ZUSAMMENFASSUNG UND AUSBLICK

- zu jedem Teilchen gibt es ein Antiteilchen
- Teilchen und Antiteilchen haben gleiche Masse,
- gleichen Eigendrehimpuls, aber
- entgegengesetzte Ladungen
- bei der Erzeugung von Masse aus Energie entstehen immer gleiche Mengen Materie und Antimaterie
- das Fehlen von Antimaterie im Universum ist eine der aktuellen Kernfragen der Teilchenphysik
- neue Erkenntnisse dazu werden ab 2008 von LHC/LHCb erwartet

bis dahin

- → dankbares Thema für Science Fiction und Thriller
- → einfache Experimente auch an der Schule machbar

zum Beispiel...

Illuminati

- → einige quantitative Betrachtungen...
 - CERN stellt Antimaterie in Form von Antiwasserstoff her
 - Nachweis anhand ihrer Vernichtungsstrahlung
 - Aufbewahrung nicht gelöst, aber selbst wenn . . .
 - \blacksquare Erzeugungsrate nur $10000~\bar{H}$ -Atome in 2 min, oder 1 g in 10^{14} Jahren
 - → zum Vergleich: Alter der Universums ca. 10¹⁰ Jahre
 - \blacksquare Energieumsatz einer CERN- \bar{H} -Jahresproduktion wäre $100~\mathrm{J}$
 - entspricht einem fest getretenen Fussball

❖ kein Problem . . .

Materie-Antimaterie Antrieb

Raketengleichung:

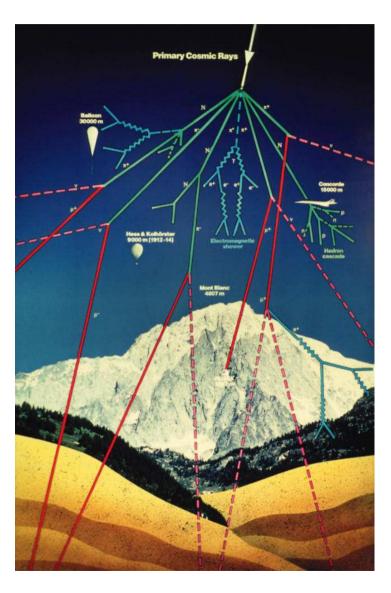
$$rac{v}{c}=rac{1-(m/M)^{2u/c}}{1+(m/M)^{2u/c}} \hspace{0.5cm} m= {
m Endmasse} \ u={
m Ausstr\"omgeschwindigkeit}$$

M = Startmasse

v =Endgeschwindigkeit

Beispiel: m/M = 0.5

■ Saturn V: u = 4.5 km/s → v = 3.1 km/s


■ Enterprise: u = c $\rightarrow v = 180\,000$ km/s

Teilchenphysik in der Schule

→ nutze den "kosmischen Beschleuniger"

zum Beispiel:

- Nachweis kosmischer Muonen mit einer einfachen Scintillator-Anordnung
 - → Demonstrationsversuch
- mögliches Messprogramm
 - → Muonfluss an der Oberfläche
 - → Winkelverteilung
 - → Ausdehnung kosmischer Schauer

besonders interessant:

Die Rate simultaner Ereignisse zwischen entfernten Stationen als Funktion des Abstandes. (kontroverse Resultate von "professionellen" Experimenten.)