Lehrerfortbildung "Weltmaschine" Magnus-Haus, Berlin, 14. November 2008

Large Hadron Collider: Die Experimente

Ulrich Husemann Deutsches Elektronen-Synchrotron

WELT

MASCHINE

CERN

Physik am Large Hadron Collider

- Wichtige Fragestellungen am LHC (vlg. Vortrag von Michael Kobel):
 - Woher kommt die Masse?
 → Higgs-Teilchen?
 - Was ist dunkle Materie?
 → Supersymmetrie?
 - Warum ist die Gravitation so schwach? \rightarrow Extra-Dimensionen?
- In jedem Fall: Erzeugung und Nachweis neuer Elementarteilchen
- LHC: neue Generation von Nachweisgeräten ("Detektoren")
 - Riesige Ausmaße aber höchste Präzision
 - Höchste Kollisionsraten

Warum immer höhere Energien?

- Grundpfeiler der Teilchenphysik:
 - Spezielle Relativitätstheorie (A. Einstein)
 - Quantenmechanik
 (E. Schrödinger, W. Heisenberg, …)
- Relativitätstheorie: $E = mc^2$
 - Masse ist eine Form von Energie
 - Kollisionen von Elementarteilchen mit hoher Energie → Produktion neuer schwerer Teilchen
- Quantenmechanik: $\Delta x \cdot \Delta p \geq \frac{h}{2}$
 - Heisenberg'sche Unschärferelation: Ort (Δx) und Impuls (Δp) nicht gleichzeitig beliebig genau bekannt
 - Größerer Impulsübertrag
 Auflösung kleinerer Strukturen

W. Heisenberg

Größenordnungen

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Anforderungen an die Detektoren

- Vollständige Charakterisierung der Kollision: Ort, Impuls, Energie, Art aller Teilchen → verschiedene Detektortypen, zwiebelschalenartig um Kollisionspunkt
- Neue Teilchen zerfallen sehr schnell
 - Nachweis von Zerfallsprodukten: geladene Leptonen (e,μ,τ), Photonen, Pionen, Protonen, Neutronen, Neutrinos
 - Keine freien Quarks → Nachweis als Jets = Bündel von Teilchen
 - Nachweis aller Zerfallsprodukte

 — möglichst hermetischer Detektor
- Neue Teilchen werden selten erzeugt → hohe Kollisionsraten → schnelle Auslese

Anforderungen an die Detektoren

- Vollständige Charakterisierung der Kollision: Ort, Impuls, Energie, Art aller Teilchen → verschiedene Detektortypen, zwiebelschalenartig um Kollisionspunkt
- Neue Teilchen zerfallen sehr schnell
 - Nachweis von Zerfallsprodukten: geladene Leptonen (e,µ,т), Photonen, Pionen, Protonen, Neutronen, Neutrinos
 - Keine freien Quarks → Nachweis als Jets = Bündel von Teilchen
 - Nachweis aller Zerfallsprodukte
 möglichst hermetischer Detektor
- Neue Teilchen werden selten erzeugt → hohe Kollisionsraten → schnelle Auslese

Teilchennachweis

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Bundesministern für Bildung und Forschung

Die LHC-Experimente im Überblick

LHC – der Large Hadron Collider

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

LHC – der Large Hadron Collider

LHC-Beschleuniger:

Proton-Proton- und Blei-Blei-Kollisionen (vgl. Vortrag Verena Kain)

WELT MASCHINE

·

DES

LHC – der Large Hadron Collider

CMS-Experiment:

Vielzweckexperiment

ATLAS-Experiment:

Vielzweckexperiment

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen (vgl. Vortrag Verena Kain)

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husen

LHC – der Large Hadron Collider LHC-Beschleuniger:

8,5 km

ATLAS-Experiment:

Vielzweckexperiment

ALICE-Experiment: Schwerionen & "Ursuppe"

Proton-Proton- und

Blei-Blei-Kollisionen

(vgl. Vortrag Verena Kain)

ung "Weltmaschine", Berlin, 14.11.08, U. Husen

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- * Gewicht: 7.000 Tonnen
- * 100 Millionen Elektronikkanäle
- * Mitarbeiter: ca. 2500

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- * Gewicht: 7.000 Tonnen
- * 100 Millionen Elektronikkanäle
- * Mitarbeiter: ca. 2500

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Spurdetektoren

ATLAS

Kalorimeter

11

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- * Gewicht: 7.000 Tonnen
- * 100 Millionen Elektronikkanäle
- * Mitarbeiter: ca. 2500

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Spurdetektoren

ATLAS

Myon-Detektor Kalorimeter 11 **ATLAS-Fakten: *** 45 m lang, 25 m hoch Gewicht: 7.000 Tonnen * Spurdetektoren 100 Millionen Elektronikkanäle * Mitarbeiter: ca. 2500 *

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

CMS – Compact Muon Solenoid

ALICE – Schwerionen & Ursuppe

11

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

LHCb – Symmetrie Materie/Antimaterie

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Wechselwirkungen von Teilchen in Materie

Photonen in Materie

- Photoelektrischer Effekt: Photon schlägt Elektron aus Atomhülle, Photon wird absorbiert (kleine Energien)
- γ hv Phot

Photoeffekt

A. Einstein

 Compton-Effekt: Photon schlägt Elektron aus Atomhülle, ändert Wellenlänge (mittlere Energien)

A.H. Compton

 Paarproduktion von Elektronen und Positronen: Photon erzeugt e⁺e⁻ im Kernfeld (hohe Energien, > 10 MeV) Paarproduktion

Geladene Teilchen in Materie

 Semiklassisches Modell ("Bethe-Bloch-Formel")

H. Bethe

F. Bloch

- Geladene Teilchen verlieren Energie durch elektromagnetische Wechselwirkung mit Atomen: Ionisation
- Energieverlust pro Längeneinheit: dE/dx
- dE/dx unterschiedlich für unterschiedliche Teilchenarten
 - → Teilchenidentifikation

Spezialfälle: Elektronen und Myonen

Energieverlust von Elektronen

- Geringe Masse: $m_{\rm e} = (1/200) m_{\mu} = (1/1800) m_{\rm p}$
- Wichtigster Mechanismus für Energieverlust: Bremsstrahlung (~ 1/m⁴) (Emission von Photonen im Coulombfeld des Atomkerns)
- Myonen durchdringen mehr Materie als andere geladene Teilchen → Nachweis in "äußerer Zwiebelschale"
 - Myonen sind Leptonen: keine starke Wechselwirkung
 - Myonen sind schwer: Bremsstrahlung vernachlässigbar

Bundesministerie für Bildung und Forschung

Impulsmessung mit Spurdetektoren

Impulsmessung

- Lorentzkraft als Zentripetalkraft: $e \vec{v} \times \vec{B} = \frac{mv^2}{r} \cdot \frac{\vec{r}}{r}$
- Typische Magnete in Collider-Detektoren
 - Solenoidmagnet (häufig supraleitend) mit Rückflussjoch
 - Ausnahme: LHCb → Dipolmagnet
- Homogenes Magnetfeld: helikale (= schraubenlinienförmige) Bewegung
 - Senkrecht zu Feldlinien: Kreisbahn
 - Parallel zu Feldlinien: gleichförmig-geradlinig

 Impuls senkrecht zu *B* aus Krümmungsradius der Teilchenspur:
 *p*_T[GeV/*c*] = 0.3 *B*[T] · *r*[m]

Spur- und Vertexrekonstruktion

- Mehrlagiger Spurdetektor
- **Elektrische Signal in** jeder Detektorlage → Spurpunkte
- Spuranpassung:
 - Mustererkennung: liegen Spurpunkte auf gemeinsamer Helixbahn?
 - Spurfit: Anpassung der der Helixparameter
- Vertexanpassung: zeigen Spuren auf gemeinsamen Ursprungsort ("Vertex")?

Simulierter Zerfall eines supersymmetrischen **Teilchens** (Seitenansicht)

 $\chi^2 = \sum_{i=1}^{\infty} \frac{(x_i - \overline{x})^2}{\sigma^2}$

Spur- und Vertexrekonstruktion

Dotierte Halbleiter

- Heutige Spurdetektoren: Halbleitertechnologie
- Typische Halbleiter (z.B. Silizium, GaAs)
 - Kristallgitter mit 4 Valenzelektronen
 - Zwei Arten von Ladungsträgern:
 - Negativ freie Elektronen
 - Positiv Elektronen wandern zwischen freien Positionen im Kristallgitter ("Löcher")
- Veränderung der Eigenschaften durch Dotierung:
 - Füge Atome mit 5 Valenzelektronen hinzu (P, As, Sb): "n-dotiert" (zusätzliche Elektronen)
 - Füge Atome mit 3 Valenzelektronen hinzu (B, Al, Ga, In): "p-dotiert" (zusätzliche Löcher)
- Tieferes Verständnis: Bändermodell

[hyperphysics.phy-astr.gsu.edu]

pn-Übergang und Verarmungszone

- Übergang zwischen p-dotiertem und n-dotiertem Halbleiter
 - Ladungsträger diffundieren zur anderen Seite und rekombinieren
 - Ausbildung einer nicht-leitenden Schicht ("Verarmungszone")

(Umgekehrte) Bias-Spannung

- Entfernung von Ladungsträgern
 Vergrößerung der Verarmungszone
- Durchgang geladene Teilchen: neue Ladungsträger durch Ionisierung
 → elektrisches Signal

Funktionsprinzip: Siliziumdetektoren

Beispiel: CMS-Spurdetektor

- CMS-Experiment: gesamter Spurdetektor aus Silizium
 - Mehr als 200 m² Detektorfläche, mehr als 60 Millionen Auslesekanäle
 - Innere Lagen: Pixeldetektoren
 → hohe Auflösung
 - Äußere Lagen: Streifendetektoren
 → große Abdeckung

Gasgefüllte Detektoren

- Geladene Teilchen durchfliegen Detektor mit "Zählgas": Ionisation (5× mehr Energie pro Ionisation als bei Silizium notwendig)
- Hochspannung zwischen Anode und Kathode: Gasverstärkung (Townsend-Lawine)

WELT MASCHINE

·

Gasgefüllte Detektoren

WELT MASCHINE

· Anternation

- Geladene Teilchen durchfliegen Detektor mit "Zählgas": Ionisation (5× mehr Energie pro Ionisation als bei Silizium notwendig)
- Hochspannung zwischen Anode und Kathode: Gasverstärkung (Townsend-Lawine)

Betriebsmodi eines Zählrohrs

- Ionisationskammer: keine Gasverstärkung
- Proportionalzähler: Signal proportional zur Primärionisation
- Geiger-Müller-Modus: Zählung der durchgehenden Teilchen
- Typische "Zählgase"
 - Zählen: Argon
 - Löschen der Ladungslawine: CO₂

MDT-Detektor in ATLAS

Nachweis von Myonen in ATLAS

- Myonen: einzige Teilchenart, die Kalorimeter durchdringt
- Genaue Impulsmessung: 5500 m²
 Driftröhren (MDT = monitored drift tubes) in starkem ringförmigen Magnetfeld

Zählgas: Argon/CO₂ (93%,7%) Betriebsspannung: ca 3000 V precision wire-locator

MDT-Detektor in ATLAS

Nachweis von Myonen in ATLAS

- Myonen: einzige Teilchenart, die Kalorimeter durchdringt
- Genaue Impulsmessung: 5500 m²
 Driftröhren (MDT = monitored drift tubes) in starkem ringförmigen Magnetfeld

Zählgas: Argon/CO₂ (93%,7%) Betriebsspannung: ca 3000 V

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Bundesministerier für Bildung und Forschung

Energiemessung mit Kalorimetern

Kalorimeter

- Historisch: Kalorimeter = "Wärmemesser"
- Teilchenphysik: Kalorimeter = "Energiemesser"
- Idee: messe Teilchenenergie mittels (teilweiser) Absorption in schwerem Detektormaterial

Teilchenschauer

- Teilchen wechselwirken mit
 Detektormaterial im Kalorimeter:
 Schauer neuer Teilchen
- Welchselwirkungen in Materie: stark unterschiedlich zwischen Elektronen/ Photonen und Hadronen
 - Elektromagnetische Kalorimeter
 - Hadronische Kalorimeter
- Gesamtlänge aller Spuren im Schauer proportional zur Energie des Primärteilchens
- Teilchenidentifikation möglich durch Analyse der Schauerform

Arten von Kalorimetern

- Homogene Kalorimeter: Schauernachweis in gesamtem Detektorvolumen
 - Kristalle: CsI(TI), PbWO₄, …
 → durchgehendes Teilchen erzeugt Lichtblitz ("Szintillation")
 - Flüssige Edelgase: Argon (LAr), Krypton (LKr) → Ionisation
- Sampling-Kalorimeter: Absorbermaterial und sensitives Material wechseln sich ab
 - Metall–Szintillator: Blei, Eisen, Uran + Plastikszintillator
 - Metall–Flüssige Edelgase: Blei, Kupfer, Messing + LAr

Segment des Flüssigargon-Kalorimeters (ATLAS)

PbWO₄: Rohmaterial für elektromagnetisches Kalorimeter bei CMS

Flüssigargon-Kalorimeter in ATLAS

- Flüssigargon-Kalorimeter:
 - Durchgehendes Teilchen ionisiert hochreines flüssiges Argon
 - Erzeugte Ionen driften zu Elektroden (Spannung: ca. 2000 V), erzeugen elektrisches Signal
 - Betriebstemperatur: ca. 80 K (flüssiger Stickstoff)
- Elektromagnetisches Kalorimeter bei ATLAS
 - Absorption elektromagnetischer Schauer in Bleiplatten
 - Besonderheit Akkordeonstruktur: schnelle Auslese, keine Lücken in Detektorabdeckung

Bundesministernu für Bildung und Forschung

Vom Detektor zur Publikation

Front-End-Elektronik

- Detektoren liefern in der Regel kleine analoge Signal
 Vorverarbeitung nah am Detektor ("Front-End")
- ASD (engl.: amplifier-shaper-discriminator)

Verstärkung → Formung → Diskriminator → Schwelle

ADC (engl.: analog-to-digital converter)

- Datenübertragung häufig mit optischen Fasern
 - Kleine Dämpfung über typische Abstände (50–100 m)
 - Keine Beeinflussung durch elektromagnetische Störungen

Online-Datenverarbeitung

- Herausforderung Datenrate:
 1 Milliarde Kollisionen pro Sekunde
 - Datenrate ca. 1 TB/s → mit heutiger Technologie nicht verarbeitbar
 - Zum Glück: >99.999999% aller Kollisionen "uninteressant" → schnelle Selektion "interessanter" Kollisionen

WELT MASCHINE

·

Uninteressantes Ereignis

Online-Datenverarbeitung

- Herausforderung Datenrate:
 1 Milliarde Kollisionen pro Sekunde
 - Datenrate ca. 1 TB/s → mit heutiger Technologie nicht verarbeitbar
 - Zum Glück: >99.999999% aller Kollisionen "uninteressant" → schnelle Selektion "interessanter" Kollisionen
- Lösung: mehrstufige Online-Datenfilterung ("Trigger"):
 - Einfache Signale, geringer Auflösung,
 z. B. ein hochenergetisches Myon
 → spezielle Trigger-Hardware
 - Größere Auflösung in Teilen des Detektors, z. B. Kegel um Myon → Software auf Computerfarm
 - 3. Information von Gesamtdetektor \rightarrow Software auf Computerfarm

34

WELT MASCHINI

Lehrerfortbildung "Weltmaschine", Berlin, 14.11.08, U. Husemann: LHC – Die Experimente

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

Digitalisierung: übersetze Wechselwirkungen im Detektor in realistische Signale

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

Digitalisierung: übersetze Wechselwirkungen im Detektor in realistische Signale

Rekonstruktion/Analyse: wie für reale Daten

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

e Han Tan Shaana		
ommand	Option	Histogram htemp 🗖 Hist 🗖 Scan 🗹 Rec
Current Folder	Current Tree : Tr	ppTree
TreeList TreeList Tree	X: -empty- Y: -empty- Z: -empty- Scan box EX >-empty- EX >- EX =- EX =- E	E() -empty- evt.but evt evt.runNumber evt.eventNumber evt.ore evt.eventNumber evt.ore evt.eventNumber evt.ore evt.com/cODTLow summa evt.bunchNum153 summa evt.bunchNum36 summa evt.gliveInstLumi summa evt.scalerInstLumi summa evt.scalerInstLumi summa evt.scalerInstLumi summa evt.scalerInstLumi summa evt.scalerInstLumi summa evt.scalerInstLumi summa
		0%

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

Zusammenfassung

WELT MASCHINE

DIE KLEINSTEN TEILCHEN UND GRÖSSTEN RÄTSEL DES UNIVERSUMS AUSSTELLUNG IM U-BAHNHOF BUNDESTAG, BERLIN

15.10. - 16.11.2008 • MO - SO 10 - 19 UHR • DO 10 - 22 UHR • WWW.WELTMASCHINE.DE

Bundesministerium für Bildung und Forschung

Vier Experimente am LHC

- Zwei Vielzweckdetektoren: ATLAS, CMS
- Zwei spezialisierte Detektoren: LHCb, ALICE
- Nachweis aller Kollisionsprodukte:
 - Zwiebelschalenartiger
 Detektoraufbau
 - Spezialisierte Detektoren: Messung von Impuls, Energie und Teilchenart
 - "Cutting-Edge"-Technologien: Halbleiterdetektoren, schnelle Elektronik, Grid-Computing, …